
E xc e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n te r e st

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

E xc e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n te r e st

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

NEGOTIATING WITH SOLVERS

Emma S. Johnson, Soren A. Davis, John D. Siirola

Using Generalized Disjunctive Programming to find
Computationally Performant MIP Formulations

S A N D 2 0 2 5 - 0 6 8 1 2 C

Sandia National Laboratories

MIP Workshop 2025, June 3-6, 2025

ACKNOWLEDGMENTS

2

In addition to my coauthors, thanks to Sandia student intern AnaMaria Perez for many of the
initial experiments that seeded this work.

This effort was funded by the U.S. Department of Energy’s Process Optimization and Modeling for
Minerals Sustainability (PrOMMiS) Initiative, supported by the Office of Fossil Energy and Carbon
Management’s Office of Resource Sustainability. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

(GENERALIZED) DISJUNCTIVE PROGRAMMING

• I interpret the “G” to refer to including logical constraints (in addition to algebraic ones) in the
formulation.

• In general, then, a GDP has the form:

THE QUESTION

• My goal is to convince you the answer is ‘yes.’

• Why? When I’m wearing my engineering hat:

1. Automating reformulations from GDP to MIP allows me to computationally evaluate 5-
10 different MI(N)LP formulations for the same problem after coding one model.

2. Despite existing theory, I cannot predict which of those formulations will perform best,
nor how they will scale.

3. Each Gurobi release changes which formulations perform well (in absolute and relative
terms).

4

Is Generalized Disjunctive Programming (GDP) a useful generalization of MIP?

REFORMULATIONS FROM GDP TO MIP

5

BIG-M REFORMULATION

6

HULL REFORMULATION

7

Furman,
Sawaya, and
Grossmann,
2020

HULL REFORMULATION

8

Furman,
Sawaya, and
Grossmann,
2020

MULTIPLE BIG-M REFORMULATION

9

Trespalacios
and
Grossmann,
2015

REFORMULATIONS FROM GDP TO MIP

10

Transformation Advantages Disadvantages

Big-M Simple, requires few variables/constraints,
familiar structure for solvers

Potentially weak continuous relaxation

Hull Tighter continuous relaxation Large model: Requires many
variables/constraints

Multiple Big-M Tighter continuous relaxation with smaller
model

Requires calculating quadratically many M
values

BINARY MULTIPLICATION REFORMULATION

11

CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M
reformulation, (rBigm) and the LP relaxation
of the Hull reformulation (rHull).

12Trespalacios and Grossmann, 2016

CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M
reformulation, (rBigm) and the LP relaxation
of the Hull reformulation (rHull).

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.

13

𝑥!∗

Trespalacios and Grossmann, 2016

CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M
reformulation, (rBigm) and the LP relaxation
of the Hull reformulation (rHull).

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.

§ Solve a separation problem finding the
closest point to 𝑥!∗ (according to a norm
of your choosing), subject to (rHull). Call
this "𝑥!.

14

𝑥!∗

"𝑥!

Trespalacios and Grossmann, 2016

CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M
reformulation, (rBigm) and the LP relaxation
of the Hull reformulation (rHull).

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.

§ Solve a separation problem finding the
closest point to 𝑥!∗ (according to a norm
of your choosing), subject to (rHull). Call
this "𝑥!.

§ Add a cut at "𝑥 perpendicular to $𝑥! 	− 𝑥!∗.

15

𝑥!∗
"𝑥!

Trespalacios and Grossmann, 2016

CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M
reformulation, (rBigm) and the LP relaxation
of the Hull reformulation (rHull).

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.

§ Solve a separation problem finding the
closest point to 𝑥!∗ (according to a norm
of your choosing), subject to (rHull). Call
this "𝑥!.

§ Add a cut at "𝑥 perpendicular to $𝑥! 	− 𝑥!∗.

§ Stop if the (rBigm) objective value is the
same as the previous iteration.

16

𝑥!∗

"𝑥!

𝑥#∗
"𝑥#

Trespalacios and Grossmann, 2016

REFORMULATIONS FROM GDP TO MI(N)LP

17

Transformation Advantages Disadvantages
Binary Multiplication Additional structure for solver to exploit Introduces nonlinearity
Cutting planes Targeted tightening of Big-M relaxation in

direction of improved objective values
Can cause numerical
instability

Between Steps Tighter continuous relaxation with smaller
model in cases where there are many more
variables than constraints in each disjunct

Relaxation quality is sensitive
to choice of variable partition
and variable boundsH

yb
ri

ds
 o

f B
ig

-M

an
d

H
ul

l

Kronqvist, Misener, and Tsay, 2021

REFORMULATING LOGICAL CONSTRAINTS

• There are choices here too!

• Pyomo implements two methods:

§ Transformation to conjunctive normal form (core.logical_to_linear)

§ Sparser “factorable programming” inspired transformation that adds many auxiliary
variables (contrib.logical_to_disjunctive)

• Anecdotally, which of these we use can matter a lot. But we have very few test cases that
actually use logical constraints, so the jury’s really still out here.

18

TEST CASES: GDPLIB

19

Problem # of
Vars

of
Disjuncts

of
Disjunctions

of Linear
Constraints

of
Quadratic
Constraints

of General
NL
Constraints

batch processing 269 18 9 600 0 1
CLay0203 30 55 15 80 60 0
CLay0204 30 55 15 80 60 0
CLay0205 30 55 15 80 60 0
CLay0303 30 55 15 80 60 0
CLay0304 30 55 15 80 60 0
CLay0305 30 55 15 80 60 0
disease 1198 52 26 831 0 0

gdp reactor (cstr) 56 20 10 83 12 5
methanol 277 8 4 374 31 24
mod_hens 138 48 24 158 8 16

modprodnet: Decay 486 2 1 485 0 1
modprodnet: Dip 486 2 1 485 0 1

modprodnet: Growth 486 2 1 485 0 1
positioning 6 50 25 5 25 0
spectralog 68 60 30 150 8 0

Syngas 57618 192 96 14941 0 18
water_network 323 46 23 495 39 9
water_network:

quadratic_nonzero_origin 239 10 5 296 28 5
https://github.com/SECQUOIA/gdplib

SO… WHICH IS BEST?

20

BigM Multiple
BigM

Hull Cutting
Planes

Binary
Multiplication

batch processing 240.4 173.2
CLay0203 23.0 21.9 48.6 17.5 45.9
CLay0204 26.2 27.5 46.3 18.3 47.5
CLay0205 22.6 28.7 88.7 18.1 20.0
CLay0303 26.3 16.7 34.5 27.9 45.1
CLay0304 25.5 23.7 47.8 17.8 43.2
CLay0305 22.9 26.7 72.5 18.1 45.4
disease 4.8 5.0 5.3 4.7 28.7

gdp reactor (cstr): logical_to_disjunctive 0.9 45.4 1.0
gdp reactor (cstr): logical_to_linear 254.8 43.6 32.0

methanol 0.5
mod_hens 39.5 3.3 29.3 63.3

modprodnet: Decay 4.1 1.0 0.3 5.5 18.6
modprodnet: Dip 5.3 1.1 0.3 7.5 7.9

modprodnet: Growth 8.9 1.3 0.3 2.6 11.4
positioning 1.4 1.2 15.4 1.4 1.7
spectralog 4.1 3.0 4.4 4.2

Syngas: logical_to_disjunctive 1.8 2.1
Syngas: logical_to_linear 4.3 0.5 0.7

water_network 123.1
water_network: quadratic_nonzero_origin 248.1

Solve times (s)
from Baron:

• Within 1 second
of best solve
time

• Timeout at 5
minutes

• Error
(unsupported
transformation
or solver error)

SO… WHICH IS BEST?

21

BigM Multiple
BigM

Hull Cutting
Planes

Binary
Multiplication

batch processing 240.4 173.2
CLay0203 23.0 21.9 48.6 17.5 45.9
CLay0204 26.2 27.5 46.3 18.3 47.5
CLay0205 22.6 28.7 88.7 18.1 20.0
CLay0303 26.3 16.7 34.5 27.9 45.1
CLay0304 25.5 23.7 47.8 17.8 43.2
CLay0305 22.9 26.7 72.5 18.1 45.4
disease 4.8 5.0 5.3 4.7 28.7

gdp reactor (cstr): logical_to_disjunctive 0.9 45.4 1.0
gdp reactor (cstr): logical_to_linear 254.8 43.6 32.0

methanol 0.5 10.3
mod_hens 39.5 3.3 29.3 63.3

modprodnet: Decay 4.1 1.0 0.3 5.5 18.6
modprodnet: Dip 5.3 1.1 0.3 7.5 7.9

modprodnet: Growth 8.9 1.3 0.3 2.6 11.4
positioning 1.4 1.2 15.4 1.4 1.7
spectralog 4.1 3.0 4.4 4.2

Syngas: logical_to_disjunctive 1.8 2.1
Syngas: logical_to_linear 4.3 0.5 0.7

water_network 123.1
water_network: quadratic_nonzero_origin 248.1

Solve times (s)
from Baron:

• Within 1 second
of best solve
time

• Timeout at 5
minutes

• Error
(unsupported
transformation
or solver error)

We also ran these instances with Gurobi 12:
• In general these problems are “too easy” for Gurobi, solving in less than 1-2 seconds.
• Of the handful still hard enough to differentiate between transformations, but not so

hard that every solve times out, Gurobi usually prefers the same transformation as
Baron (with some exceptions).

22

NO FREE LUNCH!

ARE THERE HINTS OF A PATTERN?

23

Problem # of Vars # of
Disjuncts # of Disjunctions # of Linear

Constraints
of Quadratic
Constraints

of General NL
Constraints

Best
Transformation

positioning 6 50 25 5 25 0 mBigM
CLay0203 30 55 15 80 60 0 Cutting planes
CLay0204 30 55 15 80 60 0 Cutting planes
CLay0205 30 55 15 80 60 0 Cutting planes
CLay0303 30 55 15 80 60 0 mBigM
CLay0304 30 55 15 80 60 0 Cutting planes
CLay0305 30 55 15 80 60 0 Cutting planes

gdp reactor (cstr) 56 20 10 83 12 5 BigM
spectralog 68 60 30 150 8 0 Hull
mod_hens 138 48 24 158 8 16 mBigM

water_network:
quadratic_nonzero_origin 239 10 5 296 28 5 mBigM

batch processing 269 18 9 600 0 1 Cutting planes
methanol 277 8 4 374 31 24 mbigM

water_network 323 46 23 495 39 9 Binary Mult
modprodnet: Decay 486 2 1 485 0 1 mBigM

modprodnet: Dip 486 2 1 485 0 1 mBigM
modprodnet: Growth 486 2 1 485 0 1 Binary Mult

disease 1198 52 26 831 0 0 Cutting planes
Syngas 57618 192 96 14941 0 18 Hull

24

THE ANSWER CAN CHANGE WITH EVERY GUROBI VERSION

Gurobi
version Transformation(s)

Constraints
before
presolve

Constraints
after
presolve

Variables
before
presolve

Variables
after
presolve

Solve
Time

Nodes
Explored

10.0.3 core.logical_to_linear, gdp.bigm 254650 18357 21906 20781 125.2 2655

10.0.3
core.logical_to_linear,
gdp.bound_pretransformation, gdp.bigm 34858 18242 21906 20465 15.03 1362

10.0.3 contrib.logical_to_disjunctive, gdp.bigm 332749 18349 47939 20781 44.59 2291

10.0.3
contrib.logical_to_disjunctive,
gdp.bound_pretransformation, gdp.bigm 112957 18242 47939 20465 35.6 1756

11.0.3 core.logical_to_linear, gdp.bigm 254650 22219 21906 20781 14.1 2543

11.0.3
core.logical_to_linear,
gdp.bound_pretransformation, gdp.bigm 34858 18242 21906 20465 29.5 1246

11.0.3 contrib.logical_to_disjunctive, gdp.bigm 332749 21782 47939 20781 34.4 3423

11.0.3
contrib.logical_to_disjunctive,
gdp.bound_pretransformation, gdp.bigm 112957 18242 47939 20465 12 656

12.0.1 core.logical_to_linear, gdp.bigm 254650 22601 21906 20782 31.8 6229

12.0.1
core.logical_to_linear,
gdp.bound_pretransformation, gdp.bigm 34858 18242 21906 20466 27.5 1515

12.0.1 contrib.logical_to_disjunctive, gdp.bigm 332749 21189 47939 20782 28.7 3936

12.0.1
contrib.logical_to_disjunctive,
gdp.bound_pretransformation, gdp.bigm 112957 18242 47939 20466 17.1 443

• No formulation is the general answer.

• Even if one formulation was the general answer, I’m skeptical it would remain the same for
future solver versions.

• These results are too preliminary to support any particular hypothesis about what problem
attributes lend themselves to what formulations.

• ”Hybrid” formulations that have stronger relaxations than BigM but are not in the extended
space of Hull do seem to have potential.

§ I’m curious about Between Steps for this reason.

“IT DEPENDS…?”

Practical takeaway: General methods for reformulating GDPs that we can automate enable us to solve
real problems! Trying everything implemented in pyomo.gdp only takes a computer’s time—not mine!

25

RETURNING TO THE QUESTION

• In the sense that it provide an automatic way to get from a (somewhat more) formulation-
agnostic representation to a bunch of MI(N)LP formulations that may or may not serve me in
solving the problem at hand: yes, definitely.

26

Is Generalized Disjunctive Programming (GDP) a useful generalization of MIP?

Open question: Could it be useful theoretically?
• There’s very little research on using the logical structure in the solution method. Everything I

presented here essentially still throws that away.
• Could the generalization help to characterize what formulations are computationally efficient,

and why?

REFERENCES

• K.C. Furman, N.W. Sawaya, I.E. Grossmann, “A computationally useful algebraic
representation of nonlinear disjunctive convex sets using the perspective function.” Comput
Optim Appl, Volume 76, 589–614 (2020).

• Francisco Trespalacios, Ignacio E. Grossmann, “Improved Big-M reformulation for generalized
disjunctive programs,” Computers & Chemical Engineering, Volume 76, 98-103, 2015.

• Francisco Trespalacios, Ignacio E. Grossmann, “Cutting Plane Algorithm for Convex
Generalized Disjunctive Programs.” INFORMS Journal on Computing 28(2): 209-222, 2016.

• Jan Kronqvist, Ruth Misener, Calvin Tsay, “Between Steps: Intermediate Relaxations Between
Big-M and Convex Hull Formulations,” In: Stuckey, P.J. (eds) Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. CPAIOR 2021. Lecture Notes in
Computer Science, vol 12735, 2021

27

