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(GENERALIZED) DISJUNCTIVE PROGRAMMING

• I interpret the “G” to refer to including logical constraints (in addition to algebraic ones) in the 
formulation.

• In general, then, a GDP has the form:



THE QUESTION

• My goal is to convince you the answer is ‘yes.’

• Why? When I’m wearing my engineering hat:

1. Automating reformulations from GDP to MIP allows me to computationally evaluate 5-
10 different MI(N)LP formulations for the same problem after coding one model.

2. Despite existing theory, I cannot predict which of those formulations will perform best, 
nor how they will scale.

3. Each Gurobi release changes which formulations perform well (in absolute and relative 
terms).
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Is Generalized Disjunctive Programming (GDP) a useful generalization of MIP?



REFORMULATIONS FROM GDP TO MIP
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BIG-M REFORMULATION

6



HULL REFORMULATION
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Furman, 
Sawaya, and 
Grossmann, 
2020



HULL REFORMULATION
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Sawaya, and 
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2020



MULTIPLE BIG-M REFORMULATION
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Trespalacios
and 
Grossmann, 
2015



REFORMULATIONS FROM GDP TO MIP
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Transformation Advantages Disadvantages

Big-M Simple, requires few variables/constraints, 
familiar structure for solvers

Potentially weak continuous relaxation

Hull Tighter continuous relaxation Large model: Requires many 
variables/constraints

Multiple Big-M Tighter continuous relaxation with smaller 
model

Requires calculating quadratically many M 
values



BINARY MULTIPLICATION REFORMULATION
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CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M 
reformulation, (rBigm) and the LP relaxation 
of the Hull reformulation (rHull). 

12Trespalacios and Grossmann, 2016



CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M 
reformulation, (rBigm) and the LP relaxation 
of the Hull reformulation (rHull). 

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.
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𝑥!∗

Trespalacios and Grossmann, 2016



CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M 
reformulation, (rBigm) and the LP relaxation 
of the Hull reformulation (rHull). 

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.

§ Solve a separation problem finding the 
closest point to 𝑥!∗ (according to a norm 
of your choosing), subject to (rHull). Call 
this "𝑥!.
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CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M 
reformulation, (rBigm) and the LP relaxation 
of the Hull reformulation (rHull). 

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.

§ Solve a separation problem finding the 
closest point to 𝑥!∗ (according to a norm 
of your choosing), subject to (rHull). Call 
this "𝑥!.

§ Add a cut at "𝑥 perpendicular to $𝑥! 	− 𝑥!∗.
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CUTTING PLANES REFORMULATION

• Begin with LP relaxation of Big-M 
reformulation, (rBigm) and the LP relaxation 
of the Hull reformulation (rHull). 

• In iteration i:

§ Solve (rBigm) for an optimal value 𝑥!∗.

§ Solve a separation problem finding the 
closest point to 𝑥!∗ (according to a norm 
of your choosing), subject to (rHull). Call 
this "𝑥!.

§ Add a cut at "𝑥 perpendicular to $𝑥! 	− 𝑥!∗.

§ Stop if the (rBigm) objective value is the 
same as the previous iteration.
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REFORMULATIONS FROM GDP TO MI(N)LP

17

Transformation Advantages Disadvantages
Binary Multiplication Additional structure for solver to exploit Introduces nonlinearity
Cutting planes Targeted tightening of Big-M relaxation in 

direction of improved objective values
Can cause numerical 
instability

Between Steps Tighter continuous relaxation with smaller 
model in cases where there are many more 
variables than constraints in each disjunct

Relaxation quality is sensitive 
to choice of variable partition 
and variable boundsH
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Kronqvist, Misener, and Tsay, 2021



REFORMULATING LOGICAL CONSTRAINTS

• There are choices here too!

• Pyomo implements two methods:

§ Transformation to conjunctive normal form (core.logical_to_linear)

§ Sparser “factorable programming” inspired transformation that adds many auxiliary 
variables (contrib.logical_to_disjunctive)

• Anecdotally, which of these we use can matter a lot. But we have very few test cases that 
actually use logical constraints, so the jury’s really still out here.
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TEST CASES: GDPLIB
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Problem # of 
Vars

# of 
Disjuncts

# of 
Disjunctions

# of Linear 
Constraints

# of 
Quadratic 
Constraints

# of General 
NL 
Constraints

batch processing 269 18 9 600 0 1
CLay0203 30 55 15 80 60 0
CLay0204 30 55 15 80 60 0
CLay0205 30 55 15 80 60 0
CLay0303 30 55 15 80 60 0
CLay0304 30 55 15 80 60 0
CLay0305 30 55 15 80 60 0
disease 1198 52 26 831 0 0

gdp reactor (cstr) 56 20 10 83 12 5
methanol 277 8 4 374 31 24
mod_hens 138 48 24 158 8 16

modprodnet: Decay 486 2 1 485 0 1
modprodnet: Dip 486 2 1 485 0 1

modprodnet: Growth 486 2 1 485 0 1
positioning 6 50 25 5 25 0
spectralog 68 60 30 150 8 0

Syngas 57618 192 96 14941 0 18
water_network 323 46 23 495 39 9
water_network: 

quadratic_nonzero_origin 239 10 5 296 28 5
https://github.com/SECQUOIA/gdplib



SO… WHICH IS BEST?
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BigM Multiple 
BigM

Hull Cutting 
Planes

Binary 
Multiplication

batch processing 240.4 173.2
CLay0203 23.0 21.9 48.6 17.5 45.9
CLay0204 26.2 27.5 46.3 18.3 47.5
CLay0205 22.6 28.7 88.7 18.1 20.0
CLay0303 26.3 16.7 34.5 27.9 45.1
CLay0304 25.5 23.7 47.8 17.8 43.2
CLay0305 22.9 26.7 72.5 18.1 45.4
disease 4.8 5.0 5.3 4.7 28.7

gdp reactor (cstr): logical_to_disjunctive 0.9 45.4 1.0
gdp reactor (cstr): logical_to_linear 254.8 43.6 32.0

methanol 0.5
mod_hens 39.5 3.3 29.3 63.3

modprodnet: Decay 4.1 1.0 0.3 5.5 18.6
modprodnet: Dip 5.3 1.1 0.3 7.5 7.9

modprodnet: Growth 8.9 1.3 0.3 2.6 11.4
positioning 1.4 1.2 15.4 1.4 1.7
spectralog 4.1 3.0 4.4 4.2

Syngas: logical_to_disjunctive 1.8 2.1
Syngas: logical_to_linear 4.3 0.5 0.7

water_network 123.1
water_network: quadratic_nonzero_origin 248.1

Solve times (s) 
from Baron:

• Within 1 second 
of best solve 
time

• Timeout at 5 
minutes

• Error 
(unsupported 
transformation 
or solver error)
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BigM Multiple 
BigM

Hull Cutting 
Planes

Binary 
Multiplication

batch processing 240.4 173.2
CLay0203 23.0 21.9 48.6 17.5 45.9
CLay0204 26.2 27.5 46.3 18.3 47.5
CLay0205 22.6 28.7 88.7 18.1 20.0
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disease 4.8 5.0 5.3 4.7 28.7

gdp reactor (cstr): logical_to_disjunctive 0.9 45.4 1.0
gdp reactor (cstr): logical_to_linear 254.8 43.6 32.0

methanol 0.5 10.3
mod_hens 39.5 3.3 29.3 63.3

modprodnet: Decay 4.1 1.0 0.3 5.5 18.6
modprodnet: Dip 5.3 1.1 0.3 7.5 7.9

modprodnet: Growth 8.9 1.3 0.3 2.6 11.4
positioning 1.4 1.2 15.4 1.4 1.7
spectralog 4.1 3.0 4.4 4.2

Syngas: logical_to_disjunctive 1.8 2.1
Syngas: logical_to_linear 4.3 0.5 0.7

water_network 123.1
water_network: quadratic_nonzero_origin 248.1

Solve times (s) 
from Baron:

• Within 1 second 
of best solve 
time

• Timeout at 5 
minutes

• Error 
(unsupported 
transformation 
or solver error)

We also ran these instances with Gurobi 12:
• In general these problems are “too easy” for Gurobi, solving in less than 1-2 seconds.
• Of the handful still hard enough to differentiate between transformations, but not so 

hard that every solve times out, Gurobi usually prefers the same transformation as 
Baron (with some exceptions).
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NO FREE LUNCH!



ARE THERE HINTS OF A PATTERN?
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Problem # of Vars # of 
Disjuncts # of Disjunctions # of Linear 

Constraints
# of Quadratic 
Constraints

# of General NL 
Constraints

Best 
Transformation

positioning 6 50 25 5 25 0 mBigM
CLay0203 30 55 15 80 60 0 Cutting planes
CLay0204 30 55 15 80 60 0 Cutting planes
CLay0205 30 55 15 80 60 0 Cutting planes
CLay0303 30 55 15 80 60 0 mBigM
CLay0304 30 55 15 80 60 0 Cutting planes
CLay0305 30 55 15 80 60 0 Cutting planes

gdp reactor (cstr) 56 20 10 83 12 5 BigM
spectralog 68 60 30 150 8 0 Hull
mod_hens 138 48 24 158 8 16 mBigM

water_network: 
quadratic_nonzero_origin 239 10 5 296 28 5 mBigM

batch processing 269 18 9 600 0 1 Cutting planes
methanol 277 8 4 374 31 24 mbigM

water_network 323 46 23 495 39 9 Binary Mult
modprodnet: Decay 486 2 1 485 0 1 mBigM

modprodnet: Dip 486 2 1 485 0 1 mBigM
modprodnet: Growth 486 2 1 485 0 1 Binary Mult

disease 1198 52 26 831 0 0 Cutting planes
Syngas 57618 192 96 14941 0 18 Hull
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THE ANSWER CAN CHANGE WITH EVERY GUROBI VERSION

Gurobi 
version Transformation(s)

Constraints 
before 
presolve

Constraints 
after 
presolve

Variables 
before 
presolve

Variables 
after 
presolve

Solve 
Time

Nodes 
Explored

10.0.3 core.logical_to_linear, gdp.bigm 254650 18357 21906 20781 125.2 2655

10.0.3
core.logical_to_linear, 
gdp.bound_pretransformation, gdp.bigm 34858 18242 21906 20465 15.03 1362

10.0.3 contrib.logical_to_disjunctive, gdp.bigm 332749 18349 47939 20781 44.59 2291

10.0.3
contrib.logical_to_disjunctive, 
gdp.bound_pretransformation, gdp.bigm 112957 18242 47939 20465 35.6 1756

11.0.3 core.logical_to_linear, gdp.bigm 254650 22219 21906 20781 14.1 2543

11.0.3
core.logical_to_linear, 
gdp.bound_pretransformation, gdp.bigm 34858 18242 21906 20465 29.5 1246

11.0.3 contrib.logical_to_disjunctive, gdp.bigm 332749 21782 47939 20781 34.4 3423

11.0.3
contrib.logical_to_disjunctive, 
gdp.bound_pretransformation, gdp.bigm 112957 18242 47939 20465 12 656

12.0.1 core.logical_to_linear, gdp.bigm 254650 22601 21906 20782 31.8 6229

12.0.1
core.logical_to_linear, 
gdp.bound_pretransformation, gdp.bigm 34858 18242 21906 20466 27.5 1515

12.0.1 contrib.logical_to_disjunctive, gdp.bigm 332749 21189 47939 20782 28.7 3936

12.0.1
contrib.logical_to_disjunctive, 
gdp.bound_pretransformation, gdp.bigm 112957 18242 47939 20466 17.1 443



• No formulation is the general answer.

• Even if one formulation was the general answer, I’m skeptical it would remain the same for 
future solver versions.

• These results are too preliminary to support any particular hypothesis about what problem 
attributes lend themselves to what formulations.

• ”Hybrid” formulations that have stronger relaxations than BigM but are not in the extended 
space of Hull do seem to have potential.

§ I’m curious about Between Steps for this reason.

“IT DEPENDS…?”

Practical takeaway: General methods for reformulating GDPs that we can automate enable us to solve 
real problems! Trying everything implemented in pyomo.gdp only takes a computer’s time—not mine!
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RETURNING TO THE QUESTION

• In the sense that it provide an automatic way to get from a (somewhat more) formulation-
agnostic representation to a bunch of MI(N)LP formulations that may or may not serve me in 
solving the problem at hand: yes, definitely.
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Is Generalized Disjunctive Programming (GDP) a useful generalization of MIP?

Open question: Could it be useful theoretically?
• There’s very little research on using the logical structure in the solution method. Everything I 

presented here essentially still throws that away.
• Could the generalization help to characterize what formulations are computationally efficient, 

and why?
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